OCEAN TOWNSHIP HIGH SCHOOL
OCEAN, NEW JERSEY
ALLAN BLOCK FENCE DESIGN

SHEET INDEX
SHEET 1: TITLE SHEET
SHEET 2: DESIGN REQUIREMENTS
SHEET 3: SPECIFICATIONS
SHEET 4: CONSTRUCTION DETAILS FOR PANEL TYPE A
SHEET 5: CONSTRUCTION DETAILS
AB FENCE SYSTEM GENERAL NOTES:

1. CONSTRUCTION OF THE AB FENCE SYSTEM SHALL BE IN ACCORDANCE WITH THE "AB FENCE SYSTEM INSTALLATION GUIDE."

2. CONSTRUCTION INSPECTION SHALL INCLUDE BUT NOT BE LIMITED TO PILE EXCAVATION, CONCRETE POURING, REINFORCEMENT PLACING, GROUT PLACING AND AB FENCE BLOCK INSTALLATION.

3. AB FENCE DESIGN IS BASED ON THE FOLLOWING DESIGN CRITERIA:
 a. WIND SPEED: 80 MPH (PER SITE PLAN REQUIREMENTS)
 b. EXPOSURE B (SECTION 4.5.6.3 ASCE 7-98)
 c. ALLOWABLE FOUNDATION AND LATERAL PRESSURE SHALL MEET OR EXCEED VALUES FOR CLASS #4, 51 = 150 psf. SOIL TYPE PER TABLE 1063.2 OF THE IBC. SOIL PARAMETERS SHALL BE VERIFIED BY A CIVIL ENGINEER.

4. PROVIDE TEMPORARY LATERAL SUPPORT FOR ALL WALLS UNTIL WALLS ARE ADEQUATELY BRACED.

5. UNLESS NOTED OTHERWISE, REINFORCED POSTS ARE CENTERED ON THE CONCRETE PILE FOOTINGS.

TABLE 1.1: AB FENCE SYSTEM DESIGN REQUIREMENTS

<table>
<thead>
<tr>
<th>FENCE HEIGHT, COURSE</th>
<th>PANEL LENGTH, BLOCK</th>
<th>VERTICAL STEEL</th>
<th>HORIZONTAL STEEL</th>
<th>HORIZONTAL STEEL CURVING, Bk</th>
<th>PILE DIAMETER</th>
<th>PILE DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post - 15 Block x 753.8</td>
<td>19.79 ft</td>
<td>4 Number 2 in.</td>
<td>3 Number 2 in.</td>
<td>1.5 ft</td>
<td>2 ft</td>
<td>4 ft</td>
</tr>
<tr>
<td>Panel - 15 Block x 600</td>
<td>6.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATION GUIDELINES: AB Fence System

SECTION 1

Part 1: GENERAL

1.1 Scope
Work includes furnishing and installing modular concrete block fencing system to the heights and lengths specified on the construction drawings and to the specifications listed herein.

1.2 Reference Standards
ASTM C1372-97 Standard Specifications for Segmental Retaining Wall Units.

1.3 Delivery, Storage, and Handling
A. Installer shall check the materials upon delivery to assure proper material has been received.
B. Installer shall prevent excessive mud, concrete, and like materials from coming in contact with the materials.
C. Materials shall be protected from damage once on site. Damaged materials including cracked and chipped block beyond allowances provided for in ASTM C1372-97 must not be used in the fence.

Part 2: MATERIALS

2.1 AB Fence System Units
A. System units shall be AB Fence Post, Panel and Cap units as produced by a licensed Manufacturer.
B. System units shall have a minimum 28 day compressive strength of 3000 psi (20.7 Mpa) in accordance with ASTM C 1372-97. The concrete units shall have adequate freeze-thaw protection with an average absorption rate of 7.5 lb/ft³ (120 kg/m³) for northern climates and 10 lb/ft³ (160 kg/m³) for southern climates.
C. Exterior dimensions shall be uniform and consistent. Maximum dimensional deviations shall be 1/8 in (3 mm), not including textured face.
D. Exterior shall be textured or striated or a combination of both. Color as specified by the project owner.

2.2 Pile Concrete
A. Concrete used to construct the piles must have a minimum compressive strength of 3000 psi (20.7 MPa).

2.3 Concrete Grout
A. Concrete grout used as unit core fill shall conform to ASTM C476 and have a minimum compressive strength of 3000 psi (20.7 MPa) with Fine Aggregate Grading Requirements defined by ASTM C404.

2.4 Steel Reinforcement
A. All reinforcing bars shall be deformed billet steel conforming to ASTM A615 grade 60. Bars shall be branded by the manufacturer with bar size and grade of steel, and certified mill reports shall be submitted for record.

2.5 Construction Adhesive
A. Exterior grade construction adhesive used to adhere the cap block to both the posts and panels shall be PL Premium as manufactured by OSI Sealants Inc. (or equivalent) with a minimum shear strength of 300 psi (2.0 MPa).

2.6 Shimming Material
A. Material used for shimming must be non-degradable.

Part 3: SYSTEM CONSTRUCTION

3.1 Layout
A. Excavate a 6 ft (150 mm) deep by 12 ft (360 mm) wide trench along the centerline of the AB Fence the entire length of the fence.
B. The center of each pile hole must be located and drilled to a maximum horizontal tolerance of ±1 in (25 mm). The depth and diameter must be at least that specified in design.
C. The top of the pile holes shall be to approximately 1/2 in (13 mm), 1 in (25 mm) maximum, below the design elevation of the pile. A mortar bed is required for the placement of the first post, 12 in (300 mm) of cylindrical tubing material is recommended to form up the top of the hole for setting the elevation.

3.2 Pile Construction
A. Pour concrete into the pile hole meeting the strength requirements for the pile concrete to meet the specification listed in 3.1-C.
B. Place vertical steel reinforcement into the wet pile concrete within 0.5 in (13 mm) of the design horizontal location for the steel. The steel bars must extend into the pile to the depth specified in the design with a minimum clear cover at the bottom of the pile of 3 in (75 mm). The steel bars must also extend out the top of the pile minimum distance to achieve a lap splice equal to 20 times the bar diameter.
C. Allow the concrete to harden 4 hrs at or above 40° F (4.4° C) or until hard enough to resist more than a surface scratch when scraped with a steel rebar before placing post.

3.3 Post and Panel Construction
A. Fill trench between each post the design elevation of the bottom of the fence with a well graded compactable aggregate to 90% Standard Proctor.
B. Set the first post block on a mortar bed with with ASTM Type N mortar and maximum thickness of 1 in (25mm).
C. The panels must extend a minimum of 1 in (25 mm) into the post block columns.
D. Horizontal steel reinforcement must be installed in the specified bond beam locations. The horizontal steel must have a 3 in (75mm) clear cover at each end.
E. The panel block must be stacked in a running bond pattern.
F. All post block and panel block above and below the bond beam locations must be filled with concrete grout meeting the strength requirements, and consolidation with a concrete vibrator.
G. Minimum curing time for concrete grout is 4 hrs for the bottom bond beam and 2 hrs for all other locations.
H. Maximum stacking lifts and filling of the post blocks is 4 ft (2.4 m). Vertical steel reinforcement shall maintain a 1 in (25 mm) clear cover from all inside surfaces of the post block. Minimum lap splice requirements are 20 times the bar diameter.
I. Panel block must be stacked from bond beam to bond beam and filled with concrete grout concurrently.
NOTE 1:
FOOTING DEPTH TO BE BASED ON MINIMUM FROST DEPTH OR 4 FOOT MINIMUM.
Fence Design Hand Calculations

Input variables are in boxed areas

Allan Block Parameters:
- **Wall Length:** \(W_l := 15.3 \text{ ft} \)
- **Course height:** \(h := 0.6354 \text{ ft} \)
- **Panel Block depth:** \(t := 0.469 \text{ ft} \)
- **Panel Block length:** \(w := 1.4688 \text{ ft} \)

 (See Table 1)
- **Post Block length:** \(P_l := 1.4688 \text{ ft} \)
- **Post Block depth:** \(P_d := 0.9688 \text{ ft} \)

 (See Table 1)
- **Post Block Notch depth:** \(P_{nd} := 0.125 \text{ ft} \)

 (See Table 1)
- **Corner Post Block Length:** \(P_c := 1.0 \text{ ft} \)
- **Amount of grout per post block:** \(\text{PostGrout} = 48 \text{ lbf} \)

Post Block Selection:
- Small Post = 1
- Large Post = 2

Table 1

<table>
<thead>
<tr>
<th>Post Block Options</th>
<th>Small Post Block</th>
<th>Large Post Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_d)</td>
<td>0.9688 ft</td>
<td>1.6667 ft</td>
</tr>
<tr>
<td>(P_{nd})</td>
<td>0.125 ft</td>
<td>0.1667 ft</td>
</tr>
<tr>
<td>PostGrout</td>
<td>48 lbf</td>
<td>98 lbf</td>
</tr>
</tbody>
</table>

Wind Pressure Entered by Engineer

If you do not want the spreadsheet to calculate wind pressures based on wind speed and exposure coefficients, you can enter a design wind Pressure. If so, enter your design wind pressure as DWP and skip to pages 4 and 5. Otherwise leave the DWP as 0.0 psf and fill in the entire spreadsheet.

DWP = 0.0 psf

Fence Parameters:
- **Number of full size block per panel to determine length:** \(s := 8.5 \)
- **Panel Length Only:** \(P_{\text{L}} := s \cdot w \)

 \(P_{\text{L}} := 12.4848 \text{ ft} \)
- **Post Spacing - Center of Post Block to Center of Post Block:**

 \[
 s_1 := s \cdot w + 2(0.1875\text{in} + 0.25\text{in}) - 2 \cdot P_{nd} + 2 \cdot \left(\frac{P_l}{2}\right)
 \]

 \(s_1 = 13.7765 \text{ ft} \)
- **Tributary Area:**

 \(T_{\text{a}} := s_1 \cdot H \)

 \(T_{\text{a}} = 92.456 \text{ ft}^2 \)

Input Parameters for Footing Dimensions
- **Footing Depth:** \(d_2 := 4.0 \text{ ft} \)
- **Footing Diameter:** \(b := 2\text{ ft} \)

Input Parameters for a Retaining Fence:

SOIL PARAMETERS
- **Friction Angle:** \(\phi := 30\text{deg} \)
- **Unit Weight:** \(\gamma := 120\text{pcf} \)

BACKSLOPE PARAMETERS
- **Backslope angle:** \(i := 0\text{deg} \)

SURCHARGE PARAMETERS
- **Surcharge:** \(q := 0\text{psf} \)

Height of soil: \(H_s := 0\text{ ft} \)

Preliminary design calculations. Review and certification by a professional engineer required.
Preliminary design calculations. Review and certification by a professional engineer required.
Reinforcement Parameters:

Post:
Quantity number of rebar in post: \(N_b := 4 \)
Post bar Size: \(\text{size} := 4 \)
Radius of bar: \(r := \frac{\text{size} \cdot \text{in}}{2.8} \)

Bond Beam:
Quantity number of bond beams: \(N_{bb} := 2 \)
Bond beam bar Size: \(\text{size}_{bb} := 4 \)
Radius of bar: \(r_{bb} := \frac{\text{size}_{bb} \cdot \text{in}}{2.8} \)

Foundation Design for Pilaster:

Allowable foundation and lateral pressure:

NOTE: This Foundation Design section is used for both the UBC 97 and the self calculated wind pressure value.

UBC Table 18-I-A - Allowable Foundation and Lateral Pressure

<table>
<thead>
<tr>
<th>Class of Materials 1</th>
<th>Lateral Bearing lbs/ft²/ft of Depth below natural grade 3 (S1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Massive crystalline bedrock</td>
<td>1,200</td>
</tr>
<tr>
<td>2. Sedimentary and floatated rock</td>
<td>400</td>
</tr>
<tr>
<td>3. Sandy gravel and/or gravel (GW and GP)</td>
<td>200</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM, GC)</td>
<td>150</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay, clayey silt (CL, ML, MH, and CH)</td>
<td>100</td>
</tr>
</tbody>
</table>

1 For soil classifications OL, OH and PT (i.e., organic clays and peat), a foundation investigation shall be required.
3 May be increased the amount of the designated value for each additional foot of depth to a maximum of 15 times the designated value. Isolated poles for uses such as flagpoles or signs and poles used to support buildings that are not adversely affected by a 1/2-inch motion at ground surface due to short-term lateral loads may be designed using lateral sliding resistance may be combined.

\[S_1 := 150 \cdot \frac{(\text{psf})}{\text{ft}} \]

The value for \(S_1 \) has to be multiplied by 2 since we allow for a 1/2" deflection at the surface. This number is also multiplied by 1/3 due to the depth of pilaster.

\[S_{1\text{factored}} := \frac{S_1 \cdot 2}{3} \]
\[S_{1\text{factored}} = 100 \cdot \text{pcf} \]

Concrete Parameters:

Compressive strength of concrete: \(f_m := 3000 \cdot \text{psi} \)

Preliminary design calculations. Review and certification by a professional engineer required.
The following tables are reproduced from the 1997 Uniform Building Code, Volume 2

Wind Pressure Conditions:

Figure 16-1 Minimum Basic Wind Speeds In Miles Per Hour (x 1.61 for km/h)

1. Linear interpolation between wind speed contours is acceptable.
2. Caution in use of wind speed contours in mountainous regions of Alaska is advised.
3. Wind speed for Hawaii is 80, Puerto Rico is 95 and the Virgin Islands is 110.
4. Wind speed may be assumed to be constant between the coastline and the nearest inland contour.

Basic Wind speed:

\[V := 80 \]

Units := "mph"

UNITS:

- mph = miles per hour
- fps = feet per second

ConversionX := if(Units = "mph", 0.00256psf, if(Units = "fps", 0.00119psf, "CHECK UNITS"))

ConversionX = 0.00256-psf

Stagnation pressure:

\[qs := ConversionX V^2 \]

\[qs = 16.384 \cdot \text{psf} \]

Preliminary design calculations. Review and certification by a professional engineer required.
WIND EXPOSURE COEFFICIENT

Exposure D - Describes the most severe exposure with surface roughness consisting of flat, unobstructed areas and bodies of water over 1 mile or more in width. Exposure D extends inland from the shoreline 1/4 mile.

Exposure C - Surface roughness consisting of open terrain with scattered obstructions having heights generally less than 30 ft extending 1/2 mile or more from the site. This category includes flat open country, grasslands, and bodies of water under 1-mile in width.

Exposure B - Surface roughness consisting of urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of a single family dwelling or larger.

Exposure type: \(\text{Et := "B"} \)

COMBINED HEIGHT, EXPOSURE AND GUST FACTOR COEFFICIENT (Ce)

<table>
<thead>
<tr>
<th>Exposure</th>
<th>(H<12 \text{ ft}) Pressure Coefficient</th>
<th>(H>12 \text{ ft}) Pressure Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.68</td>
<td>0.85</td>
</tr>
<tr>
<td>C</td>
<td>0.90</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>1.25</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Wall Height: \(H = 6.7111 \text{ ft} \)

Combined height, exposure and gust factor coefficient: \(Ce = 0.68 \)

Calculation for Wind Pressure (P):

\[
P := \text{if}(DWP > 0, \ DWP, \ Ce \cdot qs)
\]

Pressure Type = "Standard Method"

Calculated Wind Pressure (P):

\[
P = 11.14 \cdot \text{psf}
\]

Pressure Entered by Engineer (DWP):

\[
DWP = 0 \cdot \text{psf}
\]

Individual Block Weights (See Table):

Weights used for Estimating Self weight Resistance to Overturning:

- Weight of post block: \(Wpb = 70 \cdot \text{lbf} \)
- Weight of panel block: \(Wpanb := 47 \cdot \text{lbf} \)
- Weight of cap block: \(Wcb := 60 \cdot \text{lbf} \)
- Unit weight of concrete: \(Wc := 135 \cdot \text{pcf} \)

<table>
<thead>
<tr>
<th>Block Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Post</td>
<td>70 lbf</td>
</tr>
<tr>
<td>Large Post</td>
<td>119 lbf</td>
</tr>
<tr>
<td>Panel</td>
<td>47 lbf</td>
</tr>
<tr>
<td>Cap</td>
<td>60 lbf</td>
</tr>
</tbody>
</table>

Preliminary design calculations. Review and certification by a professional engineer required.
Design Moments:

Design Moment for Post due to Wind (Figure 7):

\[M_{\text{wind,seis}} := \frac{P \cdot s \cdot H^2}{2} \quad M_{\text{wind,seis}} = 3456.4 \text{ lbf ft} \]

Design Moment for Panel \((M_2)\) (Figure 8):

\[M_2 := \frac{P \cdot s^2 \cdot H}{8 \cdot N_{\text{bb}}} \quad M_2 = 886.91 \text{ lbf ft} \]

Figure 8: Panel Design Moment per Bond Beam

Calculation of Static Earth Pressure Coefficients

Wall Batter:

\[\beta := 90 \text{ deg} \]

Weighted Friction Angle:

\[\phi_{wi} := \frac{2}{3} \cdot \phi_i \quad \phi_{wi} = 20 \text{ deg} \]

Active earth pressure coefficient:

\[K_a := \left[\frac{\csc(\beta) \cdot \sin(\beta - \phi_i)}{\sin(\beta + \phi_{wi}) + \sqrt{\sin(\beta + \phi_{wi}) \cdot \sin(\phi_i - \phi_{wi})}} \right]^2 \quad K_a = 0.2973 \]

Active Earth Force:

\[F_a := \frac{1}{2} \cdot K_a \cdot \gamma_i \cdot H_s^2 \quad F_a = 0 \text{ lbf ft} \]

\[F_{ah} := F_a \cdot \cos(\phi_{wi}) \quad F_{ah} = 0 \text{ lbf ft} \]

Surcharge Force:

\[F_q := q \cdot K_a \cdot H_s \quad F_q = 0 \text{ lbf ft} \]

\[F_{qh} := F_q \cdot \cos(\phi_{wi}) \quad F_{qh} = 0 \text{ lbf ft} \]

Determine the Overturning Moments due to Soil Retention and Surcharge \((M_{ah} \text{ and } M_{qh})\):

\[M_{ah} := F_{ah} \cdot s \cdot \frac{H_s}{3} \quad M_{ah} = 0 \text{ lbf ft} \]

\[M_{qh} := F_{qh} \cdot s \cdot 0.5 \cdot H_s \quad M_{qh} = 0 \text{ lbf ft} \]

Total Overturning Moment due to soil:

\[M_{\text{soil}} := M_{ah} + M_{qh} \quad M_{\text{soil}} = 0 \text{ lbf ft} \]

Preliminary design calculations. Review and certification by a professional engineer required.
Determine the Overturning Resistance due to Weight of Panel (Mpan):

Total Weight of Panel Block:

\[W_{\text{panelb}} := z \cdot W_{\text{panb}} \cdot s \]

\[W_{\text{panelb}} = 3995 \text{ lbf} \]

Total Weight of Grouted Cores:

\[W_{\text{groutpan}} := N_{\text{cg}} \cdot \text{PanGrout} \cdot 2 \cdot s \]

\[W_{\text{groutpan}} = 490.96 \text{ lbf} \]

Number of Panel courses grouted:

\[N_{\text{cg}} := 2 \cdot N_{\text{bb}} \]

\[N_{\text{cg}} = 4 \]

Total Weight of Caps on Panel:

\[W_{\text{cap}} := W_{\text{c}} \cdot s \]

\[W_{\text{cap}} = 510 \text{ lbf} \]

Total Panel Weight with cap:

\[W_{\text{panel}} := W_{\text{panelb}} + W_{\text{groutpan}} + W_{\text{c}} \]

\[W_{\text{panel}} = 4995.96 \text{ lbf} \]

Total Resistance Moment due to Panel Weight:

\[M_{\text{pan}} := W_{\text{panel}} \cdot \frac{t}{2} \]

\[M_{\text{pan}} = 1171.5526 \text{ lbf-ft} \]

Estimated Footing Dimensions:

Note: for actual footing depth see page 10.

Weight of Post, Cap and Footing:

Number of course tall:

\[\text{PostH} = 11 \]

\[\text{PostGrout} = 48 \text{ lbf} \]

\[W_{\text{post}} := \text{PostH} \cdot (W_{\text{pb}} + \text{PostGrout}) + W_{\text{c}} \]

\[W_{\text{post}} = 1358 \text{ lbf} \]

\[W_{\text{footing}} := \pi \left(\frac{b}{2} \right)^2 \cdot d^2 \cdot W_{\text{c}} \]

\[W_{\text{footing}} = 1696.46 \text{ lbf} \]

Total Resistance Moment due to Post and Footing:

Note: To be conservative these calculations use half the width of the fence post for the moment arm of both post and footing.

\[M_{\text{post}} := W_{\text{post}} \cdot \frac{P_{d}}{2} \]

\[M_{\text{post}} = 657.815 \text{ lbf-ft} \]

\[M_{\text{footing}} := W_{\text{footing}} \cdot \frac{P_{d}}{2} \]

\[M_{\text{footing}} = 821.7652 \text{ lbf-ft} \]

Total Resistance Moment for Post Design:

\[M_{\text{resist}_P} := M_{\text{pan}} + M_{\text{post}} \]

\[M_{\text{resist}_P} = 1829.368 \text{ lbf-ft} \]

Total Resistance Moment for Footing Design:

\[M_{\text{resist}_F} := M_{\text{pan}} + M_{\text{post}} + M_{\text{footing}} \]

\[M_{\text{resist}_F} = 2651.1331 \text{ lbf-ft} \]

Design Moment for Post Design

*Design includes soil retention and resistant moments from 90% of the self weight of the post and panel:

\[M_{\text{postd}} := M_{\text{wind_seis}} + M_{\text{soil}} + 0.9 \cdot M_{\text{resist}_P} \]

\[M_{\text{postd}} = 1809.9825 \text{ lbf-ft} \]

Preliminary design calculations. Review and certification by a professional engineer required.
Design Moment for Footing Design

*Design includes soil retention and resistant moments from 90% of the self weight of the post, panel and footing:

\[M_{\text{ftgd}} := M_{\text{wind.seis}} + M_{\text{soil}} - 0.9M_{\text{resist.F}} \]

\[M_{\text{ftgd}} = 1070.3938 \text{ lbf-ft} \]

\[M_{\text{ftgd}} := \text{if}(M_{\text{ftgd}} < 0 \text{lbf-ft}, 0 \text{lbf-ft}, M_{\text{ftgd}}) \]

\[M_{\text{ftgd}} = 1070.3938 \text{ lbf-ft} \]

Determine the depth of the Footing Pilaster (d): 1806.8.2.1 1997 UBC

To calculate the required depth of a non-constrained pilaster the following equation is used:

\[P1 = \text{The footing design moment translated to its force vector at the center height of the panel.} \]

\[P1 := \frac{M_{\text{ftgd}}}{0.5 \cdot H} \]

\[\text{depth} = \frac{A}{2} \left(1 + \sqrt{1 + \frac{4.36 \cdot h_1}{A}} \right) \]

\[A := \frac{2.34 \cdot P1}{S_{\text{factored}} \cdot d_2 \cdot b} \]

\[A = 0.9331 \text{ ft} \]

\[h_1 = \text{distance in feet from ground surface to point of application of T} \]

\[h_1 := \frac{H}{2} \]

\[h_1 = 3.3555 \text{ ft} \]

From the above equation the design footing depth can be determined.

\[d_1 := \text{if} \left(A = 0, \frac{A}{2}, \frac{A}{2} \cdot \left(1 + \sqrt{1 + \frac{4.36 \cdot h_1}{A}} \right) \right) \]

\[d_1 = 2.3719 \text{ ft} \]

By a system of iteration a value for the footing depth is determined.

\[\beta(d_2, d_1) := \text{if}(d_2 > d_1, d_2, 0 \text{ft}) \]

\[\beta(d_2, d_1) = 4 \text{ ft} \]

\[d := \beta(d_2, d_1) \]

Final value of footing depth

\[d = 4 \text{ ft} \]

Footing := if(\([d_1 = 0, "Minimum Footing Depth per Engineer", (if(d = 0, "NOT GOOD", "OK"))]\)

Footing = "OK"

If footing = "NOT GOOD" then you must assume a higher value for d2 or b

Preliminary design calculations. Review and certification by a professional engineer required.
Calculated Moments

Designers Note One: Allan Block has preformed multiple flexural capacity tests Panel and Post Structures at the
University of Calgary's research facilities and at Allan Block's own testing facility under the direct observation and
certification of STORK Twin City Testing Corporation. These test results have clearly shown that the dry-stacked
panel units flex under pressure and effectively dissipate applied forces. The reduction is through the theory of Work
Energy. The applied forces stress the entire panel until the frictional interaction between the units is overcome at
individual locations throughout the panel. This causes minor shifting of a joint location which releases the built-up
internal pressures thus dissipating the applied force to the post structures. The following is a table of percentages
of Design Force derived though testing and should be added to the post capacity formulas below.

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Wind Speeds and Stagnation Pressures</td>
</tr>
<tr>
<td>mph</td>
</tr>
<tr>
<td>Pressure lb/ft^2</td>
</tr>
<tr>
<td>Percentage of Design Capacity Increase For Post Design</td>
</tr>
<tr>
<td>Per (%)</td>
</tr>
</tbody>
</table>

Percent Value = Per := 1.45

Designers Note Two: Results from the above mentioned testing also warrants an increase of capacity of the bond
beam structure. Simple beam theory to calculate the capacity of the bond beams does not allow for the added flexural
stiffness the ball and socket joint configuration brings to the bond beam. The added strength comes from the
interlocking of the joint due to the systems self weight which inherently resists bending. In order for the ball and socket
joint to flex, the frictional interaction within the joint caused by the natural self weight of the system must be overcome.
In the above mentioned testing the bond beams and dry-stacked units were tested in combination to pressure levels
well exceeding the calculated capacity and therefore, these calculations use a conservative increase of 50% to account
for the additional flexural resistance the dry-stacked units bring to the flexural system of the panel. See the Bond
Beam Sections below.

Compressive Stress Calculations

Compressive stress in masonry

\[f_m = 3000 \text{ psi} \]

*\(f_m \) is the uniaxial compressive strength of concrete.

\[f_b := \frac{1}{3} \cdot f_m \]

\[f_b = 1000 \text{ psi} \]

The moment at the service load for panel (Mp):

Area of Steel in post per bar:

\[A_b := 3.1416 \cdot r^2 \]

\[A_b = 0.196 \text{ in}^2 \]

Post section length:

\[bs := Pl - 2Pnd \]

\[bs = 1.2188 \text{ ft} \]

Figure 9: Vertical Steel Placement

Preliminary design calculations. Review and certification by a professional engineer required.
Post section width:
\[ds := Pd - 2.25\,\text{in} - 1\,\text{in} - r \]
\[ds = 0.6771\,\text{ft} \]

Total Area of Steel per post:
\[A_s := A_b \cdot Nb \]
\[A_s = 0.785\,\text{in}^2 \]

Ratio of steel area per post area:
\[q := \frac{A_s}{2 \cdot bs \cdot ds} \]
\[q = 0.0033 \]

\(E_s \) is the modulus of elasticity for all non prestressed steel, this value is taken as 29,000,000 psi from UBC 2106.2.12.2
\[E_s := 29000\,\text{ksi} \]

\(E_m \) is modulus of elasticity of masonry. This value is taken as 750*fm from UBC 2106.2.12.1
\[E_m := 750 \cdot \text{fm} \]
\[E_m = 2250\,\text{ksi} \]

\(n \) is the modular ratio
\[n := \frac{E_s}{E_m} \]
\[n = 12.889 \]

\(k \) and \(j \) are coefficients used for internal moments and definition of neutral axis.

To solve for these variables we equate the first moments about the neutral axis of the masonry and steel areas
\[k := \sqrt{(n-q)^2 + 2 \cdot n \cdot q - n \cdot q} \]
\[k = 0.2524 \]
\[j := 1 - \frac{k}{3} \]
\[j = 0.9159 \]

Moment Capacity based on Compressive Stress in Pilaster (\(M_p \)):
\[M_p := \frac{Per \cdot f_b \cdot bs \cdot ds^2 \cdot j \cdot k}{2} \]
\[M_p = 13484.5\,\text{lbf} \cdot \text{ft} \]

\(M\text{postd} = 1809.9825\,\text{lbf} \cdot \text{ft} \)

\(\text{CompStressPil} := \text{if} (M\text{postd} < 0 \cdot \text{lbf} \cdot \text{ft}, "\text{Minimum Reinforcement per Engineer}" , \text{if}(M_p > M\text{postd} , "\text{OK}" , "\text{NOT GOOD}")) \)

\(\text{CompStressPil} = "\text{OK}" \)

If \(M_p \) is greater than \(M_1 \) then design is "OK". If not, more steel reinforcement is needed in the pilaster or reduce the tributary area.

Moment Capacity based on Compressive Stress in Bond Beam (\(M_{bb} \)):

Area of steel in bond beam per bar:
\[A_{bb} := 3.1416 \cdot \text{rbb}^2 \]
\[A_{bb} = 0.196\,\text{in}^2 \]

Bond beam section height:
\[b_p := 2 \cdot h \]
\[b_p = 1.2708\,\text{ft} \]

Bond beam section width:
\[d_p := 0.5 \cdot t \]
\[d_p = 2.814\,\text{in} \]

Preliminary design calculations. Review and certification by a professional engineer required.
Ratio of steel area per bond beam area:

Note: Bond Beam Test results have consistently shown much higher moment capacities. This is due to the ball and socket configuration of the panel block and the flange effect of the glued in place cap block. Thus the 1.5 multiplier on Mbb.

\[
q_{bb} := \frac{A_{bb}}{b_p \cdot d_p} \quad q_{bb} = 0.004576
\]

\[
k_{bb} := \sqrt{(n \cdot q_{bb})^2 + 2 \cdot n \cdot q_{bb} - n \cdot q_{bb}} \quad k_{bb} = 0.2895
\]

\[
j_{bb} := 1 - \frac{k_{bb}}{3} \quad j_{bb} = 0.9035
\]

\[
M_{bb} := \frac{1.5 \cdot f_s \cdot (b_p \cdot d_p)^2 \cdot j_{bb} \cdot k_{bb}}{2} \quad M_{bb} = 1974.0076 \text{ lbf·ft}
\]

\[
M_2 = 886.91 \text{ lbf·ft}
\]

CompStressBB := if\((M_2 < M_{bb} \text{, "OK" , "NOT GOOD"}) \)

CompStressBB = "OK"

If \(M_{bb} \) is greater than \(M_2 \) then design is "OK". If not, the tributary area must be reduced or add additional Bond Beams.

Tensile Stress Calculations

Moment Capacity based on Tensile Stress in Pilaster (Mcp):

\[f_y := 60 \text{ ksi} \]

\[f_s := 0.4 \cdot f_y \]

\[f_s = 24 \text{ ksi} \]

\[
M_{cp} := \text{Per} \cdot f_s \cdot \frac{A_s}{2} \cdot j \cdot ds \quad M_{cp} = 8475.3 \text{ lbf·ft}
\]

\[
M_{postd} = 1809.98 \text{ lbf·ft}
\]

TenStressPil := if\((M_{postd} < 0 \text{, "Minimum Reinforcement per Engineer" , if\((M_{postd} < M_{cp} \text{, "OK" , "NOT GOOD"}) \)} \)

TenStressPil = "OK"

If \(M_{cp} \) is greater than \(M_1 \) then design is "OK". If not, more steel reinforcement is needed in the pilaster or reduce the tributary area.

Moment Capacity based on Tensile Stress in Bond Beam (Mcbb):

Note: Bond Beam Test results have consistently shown much higher moment capacities. This is due to the ball and socket configuration of the panel block and the flange effect of the glued in place cap block. Thus the 1.5 multiplier on Mcbb.

\[
M_{cbb} := 1.5 \cdot f_s \cdot A_{bb} \cdot j_{bb} \cdot d_p \quad M_{cbb} = 1497.6 \text{ lbf·ft}
\]

\[
M_2 = 886.9138 \text{ ft·lbf}
\]

TenStressBB := if\((M_2 < M_{cbb} \text{, "OK" , "NOT GOOD"}) \)

TenStressBB = "OK"

If \(M_{cbb} \) is greater than \(M_2 \) then design is "OK". If not, the tributary area must be reduced or add additional Bond Beams.
Concrete Shear Calculations

Allowable shear stress for reinforced masonry is

\[S_{ssa} := 55 \text{psi} \]

Calculated shear stress at the base of pilaster

\[S_{req} = \frac{P \cdot T_a}{bs \cdot ds} \]

\[S_{req} = 8.6675 \text{ psi} \]

ShearPil := if(\(S_{ssa} > S_{req} \), "OK", "NOT GOOD")

ShearPil = "OK"

If \(S \) is greater than \(S \) then design is "OK". If not, more steel reinforcement is needed at the pile.

Allowable Wing Shear:

Note: The allowable wing shear is based on the available area of the wing, laboratory shear test results of pile blocks (270 psi) and a factor of safety of 3. Where \(A_w \) is the thickness of the post wing.

\[A_w := 2.75 \text{in} \]

\[S_{wing} := \frac{270 \text{psi} \cdot A_w}{3} \]

\[S_{wing} = 2970 \text{ lbf/ft} \]

The calculated shear is as follows:

\[A_{wpanel} := H \cdot (s1 - 1.4687 \text{ft}) \]

\[S_{wreq} := \frac{0.5 \cdot P \cdot A_{wpanel}}{H} \]

\[S_{wreq} = 69 \text{ lbf/ft} \]

ShearWing := if(\(S_{wing} > S_{wreq} \), "OK", "NOT GOOD")

ShearWing = "OK"

If \(S_{wing} \) is greater than \(S_{wreq} \) then design is OK. If not, AB Fence is not adequate for this project.

Preliminary design calculations. Review and certification by a professional engineer required.
Summary:

Allan Block Parameters:
- Block height: $h = 0.635\,\text{ft}$
- Panel Block depth: $t = 0.469\,\text{ft}$
- Panel Block length: $w = 1.4688\,\text{ft}$
- Post Block length: $P_l = 1.4688\,\text{ft}$
- Post Block depth: $P_d = 0.9688\,\text{ft}$
- Post Block Notch depth: $P_{nd} = 0.125\,\text{ft}$

Concrete Parameters:
- Compressive strength of concrete: $f_m = 3000\,\text{psi}$

Wind Pressure Conditions: (UBC 97)
- Basic Wind speed: $V = 80\,\text{mph}$
- Stagnation pressure: $q_s = 16.384\,\text{psf}$
- Exposure type: $E_t = \text{"B"}$
- Combined height, exposure and gust factor coefficient: $C_e = 0.68$

Wind Pressure Calculated:
- $DWP = 0\,\text{psf}$

Steel Parameters:
- **Post**
 - Number of rebar in post: $N_b = 4$
 - Post bar size (radius): $r = 0.0208\,\text{ft}$
 - Post bar number: $\text{size} = 4$
- **Bond Beam**
 - Number of bond beams: $N_{bb} = 2$
 - Bond beam bar size (radius): $r_{bb} = 0.0208\,\text{ft}$
 - Bond beam bar number: $\text{sizebb} = 4$

Fence Parameters:
- Number of Panel Courses: $z = 10$
- Number of Post Courses: $\text{PostH} = 11$
- Panel Height: $H = 6.7111\,\text{ft}$
- Post Height: $\text{PH} = 7.3852\,\text{ft}$
- Number of full size block per panel to determine length: $s = 8.5$

Post Spacing
- Center of Post Block to Center of Post block (used for design): $s_1 = 13.777\,\text{ft}$
- Center of Post Block to Center of Corner block:
 - $s_2 := s \cdot w + \frac{(P_l + P_c) - 2.5\text{in}}{2}$
 - $s_2 = 13.5109\,\text{ft}$
- Center of Corner Block to Center of Corner Block:
 - $s_3 := s \cdot w + P_c - 2.5\text{in}$
 - $s_3 = 13.2765\,\text{ft}$

Footing Dimensions:
- Footing depth: $d_2 = 4\,\text{ft}$
- Footing diameter: $b = 2\,\text{ft}$
- Footing = "OK"

Preliminary design calculations. Review and certification by a professional engineer required.
Summary (cont.):

Design Moment:

Post: \[M_{\text{postd}} = 1809.9825 \text{ lbf*ft} \]
Footing: \[M_{\text{ftgd}} = 1070.3938 \text{ lbf*ft} \]
Panel: \[M_2 = 886.9138 \text{ lbf*ft} \]
Total moment not reduced by self weight: \[M_{\text{wind.seis}} = 3456.4135 \text{ lbf*ft} \]

Compressive Stress:

Post/Pilaster: \[M_p = 13484.5373 \text{ lbf*ft} \] CompStressPil = "OK"
Bond Beam: \[M_{bb} = 1974.0076 \text{ lbf*ft} \] CompStressBB = "OK"

Tensile Stress in Rebar:

Post/Pilaster: \[M_{\text{cp}} = 8475.2664 \text{ lbf*ft} \] TenStressPil = "OK"
Bond Beam: \[M_{\text{cbb}} = 1497.6356 \text{ lbf*ft} \] TenStressBB = "OK"

Shear of Masonry and Concrete:

Allowable shear stress for reinforced masonry: \[S_{\text{ssa}} = 7920 \text{ psf} \]
Calculated shear stress at the base of the pilaster: \[S_{\text{req}} = 1248.1171 \text{ psf} \] ShearPil = "OK"
Allowable wing shear: \[S_{\text{wing}} = \frac{2970 \text{ lbf}}{\text{ft}} \] ShearWing = "OK"

Preliminary design calculations. Review and certification by a professional engineer required.
AB Estimate Worksheet

Project Name: Ocean Township High School
Project Number: 074.05
Project Location: Ocean Township, NJ
Date: 5/29/12
Prepared By: ESR

Design Parameters

<table>
<thead>
<tr>
<th>Section</th>
<th>Fence Height [Courses]</th>
<th>Post Height [Block]</th>
<th>Post Spacing [Block]</th>
<th>Total Length [ft]</th>
<th>Corners</th>
<th>Bond Beams per Panel</th>
<th># of Post Rebar</th>
<th>Size of Post Rebar</th>
<th>Post Size</th>
<th>Pile Diameter</th>
<th>Pile Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.8 ft (10)</td>
<td>7.4 ft (11)</td>
<td>13.7 ft (8.5)</td>
<td>13.7 ft</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>#4</td>
<td>Std</td>
<td>2 ft</td>
<td>4 ft</td>
</tr>
</tbody>
</table>

Total Fence Length*: 15 ft

Material Estimate

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Overage %</th>
<th>Total Quantity</th>
<th>Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB Fence Panel Block</td>
<td>80</td>
<td>Block</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AB Fence Half Panel Block</td>
<td>10</td>
<td>Block</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AB Fence Post Block</td>
<td>22</td>
<td>Block</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AB Fence Cap</td>
<td>11</td>
<td>Caps</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Base Rock</td>
<td>0.3</td>
<td>yd^3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Round Concrete Forms</td>
<td>2</td>
<td>ft</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cap Adhesive</td>
<td>0.5</td>
<td>Tubes</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pile Concrete</td>
<td>0.9</td>
<td>yd^3</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Post Grout</td>
<td>0.3</td>
<td>yd^3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sand Mix Grout for Bond Beams</td>
<td>0.2</td>
<td>yd^3</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#4 Rebar</td>
<td>128.9</td>
<td>ft</td>
<td>0</td>
<td>128.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9 ga Wire for Stirrups</td>
<td>28.9</td>
<td>ft</td>
<td>0</td>
<td>28.9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Labor and Engineering Estimate

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Productivity</th>
<th>Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout Crew</td>
<td>13.7 ft</td>
<td>0 ft/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pile Crew</td>
<td>2 Piles</td>
<td>0 Piles/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Base Crew</td>
<td>13.7 ft</td>
<td>0 ft/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fence Crew</td>
<td>91.1 ft^2</td>
<td>0 ft^2/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Engineering</td>
<td>99.9 ft^2</td>
<td>0 /ft^2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimate Summary

- **Material Cost:** 0
- **Engineering / Labor Cost:** 0
- **Overhead:** 0 %
- **Profit:** 0 %

Total Cost: 0
Cost / ft^2: 0

ALL DIMENSIONS ARE APPROXIMATE - DO NOT USE THE NOTED POST SPACING FOR FENCE LAYOUT.

The accuracy and use of numbers contained in this document and program are the sole responsibility of the user of this program. Allan Block Corp. assumes no liability for the use or misuse of this worksheet. The user must verify each estimate and calculation for accuracy as they pertain to their particular project.